An Inherited Magnetic Map Guides Ocean Navigation in Juvenile Pacific Salmon
نویسندگان
چکیده
Migratory marine animals exploit resources in different oceanic regions at different life stages, but how they navigate to specific oceanic areas is poorly understood. A particular challenge is explaining how juvenile animals with no prior migratory experience are able to locate specific oceanic feeding habitats that are hundreds or thousands of kilometers from their natal sites. Although adults reproducing in the vicinity of favorable ocean currents can facilitate transport of their offspring to these habitats, variation in ocean circulation makes passive transport unreliable, and young animals probably take an active role in controlling their migratory trajectories. Here we experimentally demonstrate that juvenile Chinook salmon (Oncorhynchus tshawytscha) respond to magnetic fields like those at the latitudinal extremes of their ocean range by orienting in directions that would, in each case, lead toward their marine feeding grounds. We further show that fish use the combination of magnetic intensity and inclination angle to assess their geographic location. The "magnetic map" of salmon appears to be inherited, as the fish had no prior migratory experience. These results, paired with findings in sea turtles, imply that magnetic maps are phylogenetically widespread and likely explain the extraordinary navigational abilities evident in many long-distance underwater migrants.
منابع مشابه
Animal Navigation: A Map for All Seasons
Before migrating from their home streams to the ocean, young Pacific salmon already know the magnetic parameters of their feeding grounds, allowing them to steer into a favorable habitat. What kind of 'map' representation underlies this remarkable ability?
متن کاملAnimal Navigation: Salmon Track Magnetic Variation
How animals navigate long distances to specific targets remains enigmatic. For Pacific salmon, new evidence suggests fish imprint on the magnetic coordinates of their home river and use this information to guide their return from distant open-ocean feeding areas.
متن کاملDo Hatchery Salmon Affect the North Pacific Ocean Ecosystem?
Releases of hatchery-reared anadromous salmon into the North Pacific Ocean are currently estimated between 5 and 6 billion juveniles per year. Wild spawning salmon may produce an additional 4 to 5 times this number of juveniles. With as many as 25 billion juvenile Pacific salmon annually entering the ocean and currently producing over 1. 0 million mt of returning adults, salmon survival and pro...
متن کاملGeomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon.
Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning fro...
متن کاملIn situ measurement of coastal ocean movements and survival of juvenile Pacific salmon.
Many salmon populations in both the Pacific and Atlantic Oceans have experienced sharply decreasing returns and high ocean mortality in the past two decades, with some populations facing extirpation if current marine survival trends continue. Our inability to monitor the movements of marine fish or to directly measure their survival precludes experimental tests of theories concerning the factor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 24 شماره
صفحات -
تاریخ انتشار 2014